Role of NH(2)- and COOH-terminal domains of the P protein of human parainfluenza virus type 3 in transcription and replication.

نویسندگان

  • B P De
  • M A Hoffman
  • S Choudhary
  • C C Huntley
  • A K Banerjee
چکیده

The phosphoproteins (P proteins) of paramyxoviruses play a central role in transcription and replication of the viruses by forming the RNA polymerase complex L-P and encapsidation complex (N-P) with nucleocapsid protein (N) and binding to N protein-encapsidated genome RNA template (N-RNA template). We have analyzed the human parainfluenza virus type 3 (HPIV3) P protein and deletion mutants thereof in an in vitro transcription and in vivo replication system. The in vitro system utilizes purified N-RNA template and cell extract containing L and P proteins coexpressed via plasmids using a recombinant vaccinia virus expression system. The in vivo system takes advantage of minigenome replication, which measures luciferase reporter gene expression from HPIV3 minigenomes by viral proteins in a recombinant vaccinia virus expression system. These studies revealed that the C-terminal 20-amino-acid region of P is absolutely required for transcription in vitro and luciferase expression in vivo, suggesting its critical role in viral RNA synthesis. The N-terminal 40-amino-acid region, on the other hand, is essential for luciferase expression but dispensable for transcription in vitro. Consistent with these findings, the C-terminal domain is required for binding of P protein to the N-RNA template involved in both transcription and replication, whereas the N-terminal domain is required for the formation of soluble N-P complex involved in encapsidation of nascent RNA chains during replication. Coimmunoprecipitation analysis showed that the P protein forms a stable homooligomer (perhaps a trimer) that is present in L-P and N-P complexes in the higher oligomeric forms (at least a pentamer). Interestingly, coexpression of a large excess of N- or C-terminally deleted P with wild-type P had no effect on minigenome replication in vivo, notwithstanding the formation of heterooligomeric complexes. These data indicate that P protein with a deleted terminal domain can function normally within the P heterooligomeric complex to carry out transcription and replication in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replication Characteristics of Herpes Simplex Virus Type-1 (HSV-1) Recombinants in 3 Types of Tissue Cultures

A complication in the analysis of the role of ICP34.5 gene in the herpes simplex virus type-1 (HSV-1) lifecycle is the presence of overlapping antisense gene, open reading frame P (ORF P), which is also deleted in HSV-1 ICP34.5 negative mutants. A HSV-1 wild type strain (17+) ICP34.5/ORF P deletion mutant (1716) is totally avirulent in animal models and impaired in a number of in vitro function...

متن کامل

Effects of Sodium Valproate on the Replication of Herpes Simplex Virus Type 1: An in Vitro Study

Background: Sodium valproate, an anticonvulsant drug, is reported to stimulate Human Immunodeficiency Virus type 1 and Human cytomegalovirus replication. Since epileptic patients undergoing sodium valproate therapy may suffer from various virus infections, the effect of this drug on replication of viruses especially those affecting neuronal tissues such as Herpes simplex virus type 1 is worthy ...

متن کامل

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

Involvement of actin microfilaments in the replication of human parainfluenza virus type 3.

Several studies indicate that paramyxoviruses require a specific cellular factor(s) for transcription of their genomic RNAs. We previously reported that the cellular cytoskeletal protein actin, in its polymeric form, participates in the transcription of human parainfluenza virus type 3 (HPIV3) in vitro. In the present study, we investigated the role of the polymeric form of actin, i.e., the act...

متن کامل

Study on Genetic Diversity of Terminal Fragment Sequence of Isolated Persian Tobacco Mosaic Virus

Tobacco mosaic virus (TMV) is one of the devastating plant viruses in the world that infects more than 200 plant species. Movement protein plays a supportive role in the movement of other plant viruses, and viral coat protein is highly expressed in infected plants and affects replication and movements of TMV. In order to investigate genetic variation in the terminal fragment sequence in Iranian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 74 13  شماره 

صفحات  -

تاریخ انتشار 2000